- | W O -T6082
] Technical Report No. 32-602

- | ém’e N6& - 25689&{
'y

Properties of Error- Correcting Codes
at Low Signal-to-Noise Ratios

Edward C. Posner

‘5 JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

June 15, 1964




Technical Report No. 32-602

Properties of Error-Correcting Codes
at Low Signal-tfo-Noise Ratios

Edward C. Posner

M

M. Easterling, Chief
Communications Systems Research Section

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

June 15, 1964




Copyright © 1964
Jet Propulsion Laboratory
California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics & Space Administration



JPL Technical Report No. 32-602

CONTENTS

. Introduction

Il. Minimizing Expected-Equivalent Bit Error Probability

I1l.  Minimizing Word-Equivalent Bit Error Probability

V. Orthogonal Codes

References

FIGURES

1. Power gain vs. signal-to-noise ratio for (7, 4) code

2. Power gain vs. signal-to-noise ratio for (127, 120) code

3. A, vs.vforl < v 7




JPL Technical Report No. 32-602

ABSTRACT

2587

The use of error-correcting codes on a white Gaus-
sian channel is considered as the signal-to-noise ratio
approaches zero. Two criteria of performance are used:
the expected number of information bits in error and the
probability of word error. It is shown that if bit-by-bit de-
tection is used, and if the expected number of bits in error
is to be minimized, then maximum-likelihood decoding
should be abandoned at low signal-to-noise ratios. In fact,
coding should be abandoned altogether at low signal-to-
noise ratios in favor of longer integration time per bit. If
word error probability is to be minimized, then error-
correcting codes using bit-by-bit detection hardly yield any
gain, and usually result in a loss. However, orthogonal
codes using correlation detection give a gain approaching
3.4 db as the length of the code increases without bound.
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. INTRODUCTION

In a recent article (Ref. 1), Hackett derived asymptotic error probabilities for error-correcting codes
used on a white Gaussian channel at high signal-to-noise ratio. Another important problem is the behavior of
error-correcting codes at low signal-to-noise ratios, since coding is even more necessary in such poor en-
vironments. This Report derives formulas for error probabilities of error-correcting codes at signal-to-noise
ratios approaching zero. The same formulas are derived for orthogonal codes using correlation detection.
The qualitative conclusion is that at low signal-to-noise ratios, the performance of orthogonal codes far sur-

passes the performance of error-correcting codes using bit-by-bit detection.

Before any analysis can be performed, it is necessary to review two definitions of error probabilities
for binary codes used with bit-by-bit detection, since at low signal-to-noise ratios
differ significantly. The discussion will be concerned mainly with bit error probabilities rather than word

error probabilities, since systems with differing word length will be compared. Two kinds of bit error

probability are defined:

L Py “word_equivalent bit error PI‘ObabiIity,"

2. pp, ‘expected-equivalent bit error probability.”

The definition of py, is as follows: if a code with & information bits is considered, py, is that bit error
probability which would result in the same word error probability, for a £-bit uncoded word, as the word error
probability with the code actually used. And py is defined as that bit error probability which results in the
same expected number of information bits in error, for & uncoded bits, as the expected number in error when

the code is used.

In other words, if p is the probability of word error when using a given code, 1 — (1 — pw)k =p;-

And if s is the expected number of information bits in error when the code is used, then kpp = s.
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II.  MINIMIZING EXPECTED-EQUIVALENT BIT ERROR PROBABILITY

Maximum-likelihood decoding, by definition, minimizes py, not pg. If the words have some signifi-
cance as words, then minimization of py is indeed the correct criterion. But if the £ information bits in the
code word have no particular relationship to each other, but arise from unrelated experiments, one would
consider pp the correct performance criterion for the system. It is, as will be shown below, not true that

maximum-likelihood decoding always minimizes Pg-

The decoding scheme that does minimize pp is the following procedure. For a given received word,
a given information bit is decoded as a 0 if the conditional probability that the given symbol is a 0, given the
received word, is greater than the conditional probability that it is a 1. This is done independently for each

information bit; this procedure clearly minimizes the expected number of information bits in error.

However, this decoding scheme rarely coincides with maximum-likelihood decoding at low signal-to-
noise ratios. (One case in which it actually coincides is the code in which a single information bit is re-
peated n times.) On the other hand, for high signal-to-noise ratios, this bit-by-bit scheme always agrees
with maximum-likelithood decoding. To prove this, observe that the most likely transmitted word, given a
received word, becomes arbitrarily more likely than the next-most-likely transmitted word, at sufficiently
high signal-to-noise ratios. At low signal-to-noise ratios, the optimum decoding scheme to minimize pp for
many codes becomes the following: the information bits are accepted as correct, thus ignoring the check
bits entirely. The asymptotic bit power gain is defined as the limit, as the signal approaches zero, of the
number by which the signal must be multiplied when using the code to achieve the same p, as one has when
not using the code. This power gain is then k/n (less than 1) for codes in which the decoding scheme is to
ignore the check bits. For, in the same word time, it would be possible to transmit the k information bits
uncoded and use (n/k)t time per symbol, where ¢t was the time used in the coded case. Since signal-to-noise
ratio is proportional to symbol integration time, n/k times as much signal power would be obtained by
using “bit expansion.”

It is conjectured that with any code (linear or otherwise), except for the trivial “no-coding’” code,
the asymptotic power gain using bit-by-bit detection, even with the optimum bit-by-bit decoding scheme for

minimizing p 5, is less than 1.
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Now the asymptotic bit power gain obtained with maximum-likelihood decoding will be considered.
We can prove that for close-packed cyclic codes, such as the Golay (23, 12) code, the asymptotic bit power
gain using maximum-likelihood decoding is (k/n) [1 — (27 /n)]2, where 7 is the average weight of the
correctable errors. Thus maximum-likelihood decoding is worse by a factor of [1 — (27/n)]12 than the scheme
that ignores the check bits. The proof is omitted. The power gain vs. signal-to-noise ratio for the Hamming
(7, 4) and (127, 120) codes, using maximum-likelihood decoding, is graphed in Figs. 1 and 2. It may be noted
that the crossover point, below which the codes should be abandoned, occurs at signal-to-noise ratios that

are to be considered rather high.

For criterion pg, then, the question is essentially answered. Ultimately a given code with any de-
coding scheme whatsoever should be abandoned as the signal-to-noise ratio approaches zero. The time saved
should then be used to expand the information bit time by n/k. The effect of this result is that as the signal-
to-noise ratio approaches zero, longer and longer codes must be used to achieve any gain at all with
criterion Pg- However, the use of orthogonal (or even better, biorthogonal) codes with correlation detection
is known to always decrease p, (Viterbi, Ref. 2). The quoted result, coupled with the discussion above,
shows that orthogonal codes with correlation detection are the best choice at low signal-to-noise ratios, at

least for criterion Pg-
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Fig. 1. Power gain vs. signal-to-noise ratio for (7, 4) code
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Fig. 2. Power gain vs. signal-to-noise ratio for (127, 120) code
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[ll.  MINIMIZING WORD-EQUIVALENT BIT ERROR PROBABILITY

The question of the asymptotic utility of a fixed error-correcting code at signal-to-noise ratios
approaching zero is completely answered in the fashion described above, when the criterion of minimizing
pp is used. Henceforth, we treat the criterion Pw (used, of course, with maximum-likelihood decoding). We
can then revert to word error probabilities to compare coding schemes with the same £. The situation is not
as clear-cut with the py, criterion as it was with the pp criterion, and some error-correcting codes actually do
improve performance even at arbitrarily low signal-to-noise ratios. Nevertheless, orthogonal codes with

correlation detection do even better, as will be shown.

An expression for the probability of correct word reception will be obtained for a given error-
correcting code used with maximum-likelihood detection, asymptotically valid as the signal-to-noise ratio
approaches zero. (The case n = k is the no-coding case.) The discussion will be restricted for simplicity
to linear cyclic codes. The parameter that will approach zero is the integration time per bit, ¢; the signal-to-

noise ratio per bit is proportional to ¢.

Define p(¢) to be the individual uncoded bit error probability for integration time ¢. The symbols are
considered to be f1 for this analysis. The variance of the integrator output for ¢ = 1 is normalized to be 1.
Then an individual bit is received as +1 if the integral of the signal over 1 second is positive; similarly, —1
if that integral is negative. The random variable of the additive noise component of this integral is Gaussian
of mean O and variance ¢. The probability of symbol error, p(¢), is thus the probability that a Gaussian variable

of mean 0 and variance ¢ exceeds 1. Thus

K
p() = 1 —/ (27m) ™% exp (— 02/ dv=1—-® (tl/’), (D

="

where @ is the cumulative unit normal distribution function.

Various coding systems will be compared with the no-coding system. The change in power necessary
to produce the same word error probability will now be derived. The use of an (r, k) code such that the code
word occupies the same time (k) with the code as without it decreases the integration time per symbol in

the coded case by a factor of £/n, since the time available per £-bit word is the same whether a code is used
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or not. Thus the symbol error probability using coding, /(¢) say, becomes

t)

(ke/n)*%
1 —f (2m ™ # exp (— v2/2) dv
v

= oo

(2

it

[

|

S
N
s |
SN —
P

The following notation will be used:

1
P(l) = - = 81
2
l% 1
N ) ~14 / 2., Y
0 = (2mM) % exp (—v°/2)dv = — — ®{t7);
v=0 2
g(e) = 1 —plo),
1
t) = — — €,
2
(kt/n)% ' 1 e\ %
€ = @M% exp (—02/dv = —— @) — ;
v =0 2 n
ko) = 1 — Hs).

Now suppose there is given a linear cyclic code C of length n with £ information bits, and let
maximum-lik elithood decoding be used. Let fi, 0 < j < n, denote the number of error patterns of weight j
corrected by the code C. It is well known that § fl = 2" 7*; for proof, observe that 2" % is the number of

i=0

cosets of C in the space of binary n-tuples. This result is used presently.

The probability that a k-bit uncoded word is received correctly, say 1 — py;, is given by
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1—ppy = Lg@I% (3)

The probability that the n-bit coded word is decoded correctly using C, say 1 — py, ., is given by

1 - ppcld = .20 f; 01 [s1™ 7. (4)
i

To prove Eq. (4), observe that the transmitted word is the output of the maximum-likelihood receiver if and
only if a correctable error pattern has been added to the transmitted word. Equation (4) merely represents the

probability of making a correctable error.

In the following theorem, we shall need the quantity ¥ = ¥(C), the ‘‘average weight of a correctable

’9
error :

1 n-k n
2 j=0

The parameter y is difficult to compute for most codes, since it depends on the weight structure. In the
example to be given after Theorem 1, ¥ will, however, be computed for the class of close-packed single-

error-correcting binary Hamming Codes.

Next define G(t), the power gain ratio obtained by using C, to be that factor by which the integration
time per word,_ or, equivalently, energy per bit, in the no-coding case would have to be multiplied in order to
have the same probability of correct reception with the use of the code as without the code, when the word
time is kt. (If G(t) < 1, there is a power loss if C is used.) Define G [ = G(O)] asCG = th_% G(t), the
limiting power gain as the signal-to-noise ratio approaches zero. The following theorem can then be stated:
(n —29)2

nk .

Theorem 1: G =

Before embarking on the proof of Theorem 1, the following corollary will be noted.

Corollary: The limiting power gain using C exceeds 1 if and only if v/n < (1/2) (1 — \/k/n), that
is, if and only if the average density of correctable errors is less than half of 1 minus the square root of the

information rate k/n.
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This corollary is reasonable, since for given n, k, the better codes are those that correct the greatest

number of more likely error patterns, i.e., error patterns of small weight.

To prove Theorem 1, we first show that

1
1 —ppe(d = — [1+ 2¢ln —29) + 0], as ¢ » 0. (5)
To prove Eq. (5), Eq. (4) is written as

n 1 j 1 n-j

3 fi — - € -1+ € =
j=0 2 2

n [~ 1 € [ 1 ( .)

p) f] =~ v + O(e?) =

=0 J i1 =i n-j 1

_2 2 L2" 2 _I

" [ 1 € n —j) €

2Ll —-L—+ T o -

i =0 D 2’1 -1 2)1 -1

1 2 € " 2€ n
— % f+—— 2 f- S jf; + 0.
on =0 on ~1 j =0 on =1 j=0
s
Using the fact that '§O f] = 2* “* and also the definition of 7, Eq. (5) is proved.
l=
For the no-coding case, we have more simply from Eq. (3)
(6)

2 (1 — 28) + 0(8?).
ok

1 —pyy® -

To find 3:"6 G(¢), a relationship between € and & must be found. As ¢ approaches zero, we have

_,2
from the definitions of € and &, using the power series for e ¥ /2 and integrating term-by-term, that
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R
\/277
(%)

e-| =22 111+ o00]. (7
V27T

Thus Egs. (5) and (6) become

1 2 ke \ %
1 —ppeld) = — (1 + <—> (n — 2% + O

ok \/2_;

and

1, Ut ")

1—ppylt) = — |1 - NORE 8)

27

The notation ¢’ is used in Eq. (8) to indicate that the integration time k¢t per & symbol word when using the

code is to be different from the time k¢’ per & symbol word when not using the code.

Wenow set 1 —py(t) = 1 — pp(¢') and see what relationship between ¢ and ¢’ this implies.

Equating Egs. (7) and (8), one has

ke % 4% ]
<——> n =29 +0@) = —kEGt")? + 0", 9)
n
or
"% = % k)% (27 —n) + Olmax (&, t")], (10)
or
_ 2
t' = wt + O {max [¢3/2, (:")3/2]}. (11)
nk

10
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Equation (11) means that G(t) = (n — 290 %/nk + O {max [¢%, (¢')#]}. Since ¢’ approaches zero as ¢

approaches zero, tl:“b G@) = (n — 27)%/nk, which completes the proof of Theorem 1.

The example of the close-packed single-error-correcting Hamming codes (Ref. 3, Sec. 5.1) will now
be treated. For any m > 2, these Hamming codes haven = 2™ — 1,k = 2" — m — 1, and have minimum
distance 3. The correctable error patterns are precisely the zero error pattern and every error pattern of
weight 1. Thusy = (1/2° %) [(2* "% 1D 1+1-0],andy = 1 — 27™. For these Hamming codes,
indexing G by the parameter m, Theorem 1 now gives G = (2" —3 + 27" *HZom _ D™ —m - 1),
which converges to 1 as m -+ . For the (7, 4) code, G5 = 63/64 is less than 1. However, G is greater

than 1 form > 5; Gm increases up tom = 5, then decreases toward 1.

Now let us consider the Golay (23, 12) triple-error-correcting code (Ref. 3, p. 70). Here n = 23 and
k = 12 since the code is close packed, that is, since the code corrects all errors of weight < 3 and no

others, we can compute ¥ as follows:

¥ = [1.0+ 23. 1 + 2?5) 2+(2g).3] 2711 _ 9858 ...

Thus G = (23 — 5.716)2 (23 - 19~ ! = 1.037, which exceeds 1. Hence there is a gain with the Golay code,

however extremely slight, even at arbitrarily low signal-to-noise ratios, if Py is the criterion.

In fact, we can conclude from results in the next Section that G is uniformly bounded for all C.
Moreover, we shall see that even with the use of transorthogonal codes using the optimal detection scheme
rather than bit-by-bit detection, the asymptotic savings ratio is bounded by 77 log 2 = 2.18. 4 fortiori, then,
77 log 2 is a bound for all error-correcting codes using the suboptimal bit-by-bit detection. The exact bound
would be much less. For example, if & = 1, G approaches 2/77 as n approaches infinity. We are unable to
obtain a uniform upper bound for error-correcting codes better than 7 log 2. We can however, prove the

following: if the number of errors corrected, e, is less than or equal to n/32, then G < (15/16)2/[1 - H(1/16)] ,
where H is the entropy function to the base 2; thus, G < 4/3. The details are omitted. Similarly, if e < n/4,
then G < 1 + o(4) for large A. These results are, however, much too weak. We conjecture, in fact, that
there are only finitely many codes with G > 1, besides the close-packed Hamming single-error-correcting

codes. (In fact, we only know of the Golay code.) We also conjecture that the value of G for the Hamming code
withm = 5, G, =~ 1.054, is an absolute upper bound to G for error-correcting codes using bit-by-bit detection.

We remark that the truth of the conjecture that there are only finitely many codes with G > 1 implies the

11
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conjecture that there are only finitely many close-packed codes other than the Hamming codes and the codes
with & = 1. The proof of this implication is omitted. This completes the analysis of the use of bit-by-bit

detection and error-correcting codes at arbitrarily low signal-to-noise ratios.

12
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IV.  ORTHOGONAL CODES

We now discuss orthogonal codes D using word correlation detection at very low signal-to-noise
ratios. Again both criteria pp and py should be considered, but, as in the bit-by-bit case, we can still
conclude a priori that under the pg criterion, there is again a power loss for a fixed orthogonal code as the
signal-to-noise ratio approaches zero. Relying on fomulas developed by Viterbi in Ref. 2, we consider
codes D with n information bits, thus with 2" words, of length 2°. Instead of integration time per symbol, ¢,
it is more convenient here to use the parameter s, the (output) signal-to-noise power ratio per bit. The

relationship is s? -4

In this notation, Eq. (9) of Ref. 2 becomes

=" o0

pyp(s) =1 —[ (2m)7% exp (— v2/2) [®(v + n'ts)] 2 dv. 12

As s approaches zero, it is known that py;(s) approaches 1 — 27", This can be proved from Eq. (12) by
integrating by parts, but a more elegant proof is given by observing that the capacity of this channel
approaches zero as s approaches zero. Since D has 2" words, 1 — pWD(s) indeed approaches 27", as

required.

We must now find the coefficient of s in the power series expansion of pypls) around s = 0.

Equation (12) can be written

pypls) =1 —f 2m7% exp (=v%/2) [®() + 0% sv)] Zo dv + O(s?), (13)

v==o0

where Mv) = d®(v)/(dv) = (2m) ™% exp (— v2/2) is the unit normal density function. Using the binomial

expansion,

= —00

pppls) =1 —/ {p(w) [®)2" 1] 4 (2" — 1) [n¥%s #)] [@)]12°72) dv + 0(s). (14)

13
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o0

The value of 1 — fv =_w¢(v) [® ()] 2"-1 is 1 — 27", as derived previously. Letting 2" -1 = v,

we now have

pypls) =1 - 277 _ % uemTh sf o ﬁv) (@) ]V dv + O(s2). (15)
v T Too
We therefore need the value of
4, =[ M 2 (@177 do, (16)
v = Too

for v =1, 2, ... . We shall determine 4 exactly for v = 1, 2, 3, 4; in addition, an asymptotic expression for

A, valid as v approaches infinity, will be derived.

To this end, define for a real,

g (a) =/ H A 22) [@(av)] V7T dy; 1

=T >

g, (a) is a continuously differentiable function of a. We require g (1) = 4 ; we shall find g_(a) by obtaining
a differential equation and then solving it. We need g (@) at only the one point, @ = 1, but we can get g (a)

at three points in advance, use any one of them as a boundary condition, and check our work by seeing that

the other two conditions are satisfied.

Now gV(O) = 2~ w=%) is immediate; gl(a) is in fact the constant function 2~ %. Let v > 1; then
gv(oo) = alin; gv(a) exists, and g (a) = fv -0 (27.,)"/: exp (— v2) dv. To prove the latter formula, note that
®(av) converges uniformly to the characteristic function of the positive axis, outside any interval containing

0, as a approaches infinity. Thus g () = 27 8/2 s 1. Similarly, g ( \/E) can also be obtained a priori
as (y/20) 7L

-3
A first-order differential equation for g (a) will be obtained in terms of g, _, (A +ad ") forv>
2; go(a) is determined separately. We already know that g{a) = 27%, so that all g,(a) are ultimately

determined in this manner.

14
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It is easy to justify

d -1 = -1 -
— g fa) =V*/ (2m) ™% exp {02 (1 + (@221 H@(an)] ¥ "2 vdv, v > 2. (18)
da ‘/277 v

=~ o0

When v = 2, the [®(av)]1? "2 term is 1, and (d/da) [gz(a)] is the integral of the odd function (2m ™% x
exp {—v2 [1+(a?/2]1} v from — w to =; hence (d/da) [g2(a)] is 0. Therefore g4(a) is a constant
function, and gola) = g,(0) = 27 3/2.

For v > 2, integrate Eq. (18) by parts using [®(av)] Y“2 asthe Uin JUdV = UV — [ VdU. After

several intermediate steps, Eq. (18) yields

< (g ()] - D=2 o f ¢l /21 + A% [0@n)]¥ "2 v, v 3. (19)
2 v 00

da 27 2+ a

%
Now define w = v(1 + a?)” to prove
d v-Dv-2 a a
—_ gv(a) = Ey-9g | ——— |, ¥ > 3. (20)
da 27 )

(24 a2+ ad” 1+ ad)”

Now gg4(a) and g [(a) will be determined; the higher g, are not expressible in closed form. For

v = 3, one uses g,(a) = 2% and integrates Eq. (20), using g.(0) = 2~ 5/2, to obtain
g1 g q g8&3

arctan [(1 + az)%] . (21)

(o) =
g3\ 77\/—2—

Putting a = 1 in Eq. (21), one finally obtains

1
Ag = arctan \/2 =0.215 ... . (22)
77\/ 2

-3/2

Using go(a) = 2 , one similarly finds

15
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(a) 3 1+ ad” ! (23)
g4la) = arctan + a R
277\/ 2 4 \/ 2
and
3 1
A4 = arctan V 2 - ——— =0.146 ... . (24)

2my[2 142

Since v = 2" — 1, v increases rapidly in the formulas derived for orthogonal codes. Thus, a formula
for A , asymptotic in v as v approaches infinity would be useful. Such an expression will now be obtained.

Equation (16) can be integrated by parts to obtain

4, - VT V27 f vd ([0 (v)] V”)} ; (25)
v+ D W v = ~o0

T>00

v+ 1)

4, = G ‘""{ f [<I>(v)]”1dv}, (26)

v=

where the limit must be introduced before integrating by parts to get from Eq. (25) to Eq. (26). We have used

lim

Tooo T(1 —®(T)) =0 and Tl,iinoo T®(T) = 0. From Eq. (26), using the fact that ®( — v) = 1 — D (v),

we obtain

VET i T v+l v+l
4,- — YT lim / - (@I [1-0@I" 1} dv . (2)
(v + D (v) v=0
The limit notation can now be removed:
A - VT f (1-[0@]** 4 [1—0W]¥*!} dv. (28)
v+ D) =0

We are at last prepared to derive an asymptotic expression for 4. First observe that the contribution

to 4, from the integral of [1 — ®()] V¥ 1is arbitrarily small, as v approaches infinity, compared with the

16
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contribution from 1 — [®(v)]”* 1. Thus one has the asymptotic expression

{1 - [®(1¥*L )} dy. (29)
=0

A ~

v

)

2

Given 3,0 < 6 < 1, close to 1, fixed, let v be so large that § < 1 — (172 *1). Consider the set
ofy > 0 with 1 — [®()]”*1 > 5. This set is an interval to the right of O with the right-hand endpoint
Yo = ¥o(®; v) given by ®(y) = (1 — DY RASR VS v approaches infinity, Ref. 4, p. 106, Lemma 2, implies

that

1 1
/v(‘, yg

for 8 fixed. Therefore. an expression for y, can be obtained by setting 1 — ®(yy) = 1 — (1 - §i/»+)
in Eq. (30). Now (1 - )Y+ D= exp {[log (1 — &I/(v+ D} =1+ [log 1 = 8)]/(v+ 1) +
0 {llog (1 — I /(v + D)2, for 8 fixed, as v approaches infinity. Thus Eq. (30) implies

1 —~ log (1 - 8) 1
ol = —2 "7 Lol —ohy] - (31)
Yo v+l yg'
Taking logs of both sides in Eq. (31), one has
~ 70 — 1
— —log (Y27 ¥o) = loglog [(1-8"1 - log (w+ 1)+ 0] —olyy |- (32)
2 yg
Equation (32) becomes
0
— =log v+ O(log y,), (33)
2

or

17
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vo = V2 log v + Olloglog v). (34)

Equation (29) can then be written as

Yo e
A, - Vz”f {1- [@m]1¥* 1} dy + \/;Tf {1-lom]”™h 4. (35)
y Y

v
2 =0 2 Yo

For & fixed, the second integral is arbitrarily small when compared with the first integral, as v

approaches infinity, using Eq. (34). Thus

\/277 Yo
A, ~ {1 - [®(]¥*1) dy. (36)
y =0

v2

On (0, y4), however, 1 — (1/2°*h > 1 - [@(p)] v+l 5 5, so that j§0=0 {1 - [®(I¥*1} dy lies
between [1 — (1/2"* 1] and 8y,. Since y, itself is asymptotic to 2 log v for & fixed,

Yo 0 Yo ymp 8
Iyyfo {1 - [®y]” 1} dy is asymptotic to {2 log v. Thus

2
A,~— \mlogv, (37)

2

the required expression. Figure 3 is a graph of the exact 4, vs. v for1 < v < 7.

Equation (15) can now be written as

1 n % 2
pyp) =1 — — —<—> (2" -1 A(2 St 0(s4). (38)

n
2n 27

In the uncoded case, there are n bits which occupy time ¢ each. Using r(t') for the probability of symbol

error in this system, the probability that all n uncoded symbols are received correctly, pé,D(t 8 say, is

A\

1 '

ppp(e) =1 - — - (‘_> + 00", (39)
on on =1 \ 27
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Fig. 3. 4 vs.vforl < v < 7
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Equations (38) and (39) are equated to find a relation between ¢ and ¢ '

Q7 2" -1 277

<n—t> (2" —1) 4 - (t_> + O[max (s, t")], (40)

2”,'1

or

t -
et = <—> 220D (9n _ 12 42 10 {max [:¥/2, (:")3/2)}, (4)
n 2" -1
Thus the asymptotic power gain as t approaches zero, Gn(t) say, is
22(" _1) 2" -1 2
G = ( LI (42)
n n 2" -1

Forn =1, G, = 1/2 < 1, so there is a loss if an orthogonal code is used instead of no coding.
Forn = 2, 62 =18 Ag = 9/7%) (arctan v;)2 = .83 < 1. The reason that there is aloss forn = 1 and
n = 2is that in these low-dimensional cases, not coding is equivalent to using a biorthogonal code, which is
better than an orthogonal code. But as n » o, the difference in power gains using orthogonal as opposed to

biorthogonal codes approaches zero. In addition, forn > 3, it can be shown that Gn > 1.

In Eq. (42), letting n approach infinity, Eq. (37) can be used to conclude that

lim G _ 7106 2~ 218... . (43)
n->oon
Thus there is indeed a gain as n approaches infinity, the gain approaching 3.4 db. These results are

summarized in the following theorem.

Theorem 2: For an orthogonal code with 2" words used with correlation detection on the white Gaussian
g

channel, with word error probability criterion, the asymptotic power gain G is given by G = {[22(r =V(gn _1)2)

/n} Az”—l’ where 4, v > 1, is given by: 4, = 1/ V2,A2 =12V 2,4, = 1/(77\/;) arctan V2 =

0.215... ,4, =@ v;)/él-ﬂ (arctan V;) - 1/(4 V—2—) = 0.146 ... , where 4, can be computed as
f:z_oo @ ( \/Ey) (®(y)] v-l dy,or as g (1). The function g (a) is defined as gl(a) =1/ \/;,
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% %
gz(a) = 1/2 42, dg (a)/da = (v-—Dw-9/2n) {a/[2 + A A + aB] "} 8y -9 la/Q + )77,
v > 3, withg (0) = 2~ (*~ %) Furthermore, as v approaches infinity, 4 ~ (2/v? V7 log v, so that
G, approaches 77 log 2 = 2.18 = 3.4 db. With criterion py, there is an asymptotic power gain forn > 3 as
the signal-to-noise ratio approaches zero. This asymptotic power gain approaches 3.4 db from below as

n approaches infinity.

This result can be quickly adapted to the criterion pp, using the remark from Ref. 2, Sec. V, that
in an orthogonal code, given that an error is made, all error patterns have the same probability. Thus the

following theorem holds.

Theorem 3: With pp as the criterion, there is a power loss, rather than a gain, using orthogonal
codes with correlation detection as the signal-to-noise ratio approaches zero. This loss is asymptotic in
n to (77 log 2) n2/22% or in db, asymptotic to a loss of (2n log,, 2 db, an arbitrarily large loss, proportional

to n.

Proof: Since every error pattern is equally likely, given that an error has been made, one finds, as

in Ref. 2, that

on -1
¥ _1
Substituting for py;, in Eq. (38) yields
1 LI |
pB(s) --_ (X A,y + O(s?). (45)
2 \27/ gq-1 2
With no coding, on the other hand,
1 s
2
PB(S) = - = + O(S ). (46)
2 \/277

The asymptotic power gain is thus
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n 2
— |42, . (47)
22(71‘1) 27 -1

This ratio is always less than 1, since 4, is always less than 1. The remainder of the theorem is completed

using Eq. 37.

Remark: Correlation detection is, as before, not the best way to decode to minimize Pp- The same
remarks apply here as in the bit-by-bit detection case: a given information symbol is called 0 if O is the

most likely symbol in that position, given the received waveform.

In summary, if the criterion is Pg coding at low signal-to-noise ratios actually causes a loss of
power; if py is the criterion, bit-by-bit codes barely help, but orthogonal codes give a gain of 3.4 db at low

signal-to-noise ratios.
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